Close

Course Summary:

Data Warehousing on AWS introduces you to concepts, strategies, and best practices for designing a cloud-based data warehousing solution using Amazon Redshift, the petabyte-scale data warehouse in AWS. This course demonstrates how to collect, store, and prepare data for the data warehouse by using AWS services such as Amazon DynamoDB, Amazon EMR, Amazon Kinesis, and Amazon S3. Additionally, this course demonstrates how to use Amazon QuickSight to perform analysis on your data.

Course Duration: 1 Day


Course Content:

Day 1

Module 1: Introduction to Data Warehousing

  • Relational databases
  • Data warehousing concepts
  • The intersection of data warehousing and big data
  • Overview of data management in AWS
  • Hands-on lab 1: Introduction to Amazon Redshift

Module 2: Introduction to Amazon Redshift

  • Conceptual overview
  • Real-world use cases
  • Hands-on lab 2: Launching an Amazon Redshift cluster

Module 3: Launching clusters

  • Building the cluster
  • Connecting to the cluster
  • Controlling access
  • Database security
  • Load data
  • Hands-on lab 3: Optimizing database schemas

Day 2

Module 4: Designing the database schema

  • Schemas and data types
  • Columnar compression
  • Data distribution styles
  • Data sorting methods

Module 5: Identifying data sources

  • Data sources overview
  • Amazon S3
  • Amazon DynamoDB
  • Amazon EMR
  • Amazon Kinesis Data Firehose
  • AWS Lambda Database Loader for Amazon Redshift
  • Hands-on lab 4: Loading real-time data into an Amazon Redshift database

Module 6: Loading data

  • Preparing Data
  • Loading data using COPY
  • Maintaining tables
  • Concurrent write operations
  • Troubleshooting load issues
  • Hands-on lab 5: Loading data with the COPY command

Day 3

Module 7: Writing queries and tuning for performance

  • Amazon Redshift SQL
  • User-Defined Functions (UDFs)
  • Factors that affect query performance
  • The EXPLAIN command and query plans
  • Workload Management (WLM)
  • Hands-on lab 6: Configuring workload management

Module 8: Amazon Redshift Spectrum

  • Amazon Redshift Spectrum
  • Configuring data for Amazon Redshift Spectrum
  • Amazon Redshift Spectrum Queries
  • Hands-on lab 7: Using Amazon Redshift Spectrum

Module 9: Maintaining clusters

  • Audit logging
  • Performance monitoring
  • Events and notifications

Lab 8: Auditing and monitoring clusters

  • Resizing clusters
  • Backing up and restoring clusters
  • Resource tagging and limits and constraints
  • Hands-on lab 9: Backing up, restoring and resizing clusters

Module 10: Analyzing and visualizing data

  • Power of visualizations
  • Building dashboards

Amazon QuickSight editions and features